
PostBL: Post-Mesh Boundary Layer Mesh
Generation Tool

Rajeev Jain and Timothy J. Tautges

Argonne National Laboratory, Argonne, IL 60439, USA

Abstract. A boundary layer mesh is a mesh with dense element distribution in the
normal direction along specific boundaries. PostBL is a utility to generate bounda-
ry layer elements on an existing mesh model. PostBL supports creation of hexahe-
dral, prism, quad, and tri boundary layer elements. It is formulated as an algorithm
in MeshKit, which is an open-source library for mesh generation functionalities.
Typically, boundary layer mesh generation is a premeshing process; in this effort,
however, we start from a model that has already been meshed. Boundary layer el-
ements can be generated along the entire skin or on selected exterior or internal
surface boundaries. PostBL mesh operation can be coupled with other MeshKit
meshing operations such as Jaal, NetGen, TetGen, and CAMAL and custom
meshing tools such as RGG. Simple examples demonstrating generation of
boundary layers on different mesh types and the OECD Vattenfall T-Junction
benchmark hexahedral mesh are presented.

1 Introduction

Boundary layers are typically used for CFD applications, in regions with strong
gradients-turbulent flow, diffusion-type equations, laminar flow or no-slip bound-
ary with strong gradient of velocity [23]. Most other tools for generating boundary
layers insert them before bulk mesh generation; in this effort, however, we devel-
op a tool called PostBL and start from an already meshed model. This strategy is
particularly useful when the meshing of the original problem is complicated and
involves geometry decomposition and other geometry modifications prior to
meshing. A utility for adding layers of elements along the exterior or interior
(shared by two materials) boundary is developed. It relies on the edge or surface
(2D or 3D) mesh on which the boundary layer elements are desired. This method
is also useful for creating boundary layer elements in the wake regions along the
direction of fluid flow. After boundary layer insertion, smoothing can optionally
be used to improve mesh quality. Typically in external aerodynamic simulations,
the type of turbulent modeling decides the thickness and number of boundary lay-
er elements; PostBL would save time and eliminate the complexity involved in
remeshing the entire model.

2 Rajeev Jain and Timothy J. Tautges

Most boundary layer meshing tools and algorithms treat boundary layer genera-
tion as a premeshing operation. This strategy works well for tri, quadrilateral, and
tetrahedral meshes, since robust automatic mesh generation for these mesh types is
available. However, for complex hexahedral meshes that are usually a combina-
tion of mapping, sweeping, and other such techniques, preboundary layer method-
ology is difficult to achieve in cases where decomposition boundaries cross the
boundary layers.

Refining techniques stand in the middle of premesh and postmesh boundary
layer methods, since material and boundary condition definitions are applied after
completion of the refining operation. Also, refining is often not applicable to de-
composition surfaces intersected by boundary layers, a combination of s ur-
faces, or complex thin boundary models. Tools such as CUBIT [25] have prob-
lems during the refining operation after geometry-based meshing has been done.
The reason is that placement of boundary layer nodes on interior surfaces disrupts
the usual body-associated mesh characteristics of the model. Several issues en-
countered during preboundary layer generation are also applicable to postbounda-
ry layer tools; Section 2 identifies various contributions and work been done in
this area. Section 3 discusses MeshKit and other libraries used for developing this
algorithm. Section 4 describes the PostBL algorithm. Section 5 presents examples
highlighting the capabilities of PostBL, including results with the T-junction
benchmark problem. Section 6 presents a brief summary and future work, and
Section 7 gives concluding remarks.

2 Background

Many researchers have worked in the field of performance and generation of
boundary layer elements for CFD simulations. Application-specific as well as ge-
neric tools and algorithms have been developed for generating boundary layers.
While significant contributions have been made in the field of tetrahedral mesh
generation and hexahedral mesh refinement for boundary layer generation, rela-
tively little work has been done in postmesh boundary layer generation. Some
commercial and academic tools have capabilities similar to PostBL, but they are
either proprietary or not easily available. Karman [9] presented a linear-elastic
smoothing scheme to push bulk mesh and generate a new, unstructured viscous
layer of elements. However, he doesn’t mention the ability to handle multiple ma-
terials and normal computation strategy when multiple materials are encountered
on the boundary regions. Guillaume et al [7] in their research note mention an im-
provement to Karman’s [8] approach in handling sharp corners; the main focus of
this work is on on tetrahedral meshes. Ito and Nakahashi [8] proposed a postmesh-
ing technique to create hybrid boundary layer elements; their work is also limited
to tetrahedral, prism and pyramid elements. Botasso and Detomi [2] also present a
postmesh boundary layer technique, which is again limited to tetrahedral meshes.
A mesh motion algorithm is initially used to deflate the original mesh and make
room for the boundary layer mesh. A stack of prisms is than inserted and tetrahe-

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 3

dronized. Their algorithm depends on a prism-splitting template, calibration, and
user tuning. PostBL is more general and can be applied to a variety of mesh types.

Most tetrahedral boundary layer mesh generation techniques initially fill up the
boundary layer region and then mesh the bulk region. Some methods are based on
directional grid refinement procedures for accurate solution of the boundary layer
and wake flow regions. Bahrainian and Mehrdoost [1] describe an automatic tetra-
hedral mesh generator that captures the boundary layer and wake flow region.
They compare the turbulent compressible flow solutions with published data indi-
cating better results. Pirzadeh [20] also describes a new bounding-box-based
meshing technique to generate high-quality tetrahedral meshes with boundary lay-
ers for aerospace and other applications; he also created VGRIDns, a tetrahedral
grid generator developed at NASA Langley Research Center. Garimella and
Shephard [5] present a generalized advancing layers method that can be used for
non manifold models. They discuss basic technical formulations for boundary lay-
er mesh generation, multiple growth curves at boundary layer nodes, node place-
ment, spacing types, and checks for element validity at crossover including
smoothing, shrinking, and deletion operations to avoid element collision. The fo-
cus of their work is on tetrahedral meshes; decomposed surfaces and hex-based
multimaterial models are not discussed. Loseille and Löhner [11] study aniso-
tropic mesh adaptation with boundary layer mesh generation. Highlights of gener-
ating tetrahedral meshes for automatic adaptive procedures for RANS on complex
geometries are presented. Initially, they start from specifying boundary layers as a
global mesh generation procedure; later they report problems with the approach
and start "local recovery procedures" which is the most robust of the three “meth-
ods” mentioned by the authors. In another paper [12], they discuss various aspects
of the point insertion methodology, including optimization, use of normal, and re-
valuation after each layer insertion. All of the above work can be classified as pre-
boundary layer mesh generation.

Several publications report on generating boundary layer elements in hexahe-
dral meshes. Quadros and Shimada [22] discuss a method for hex mesh generation
of thin-section solids. Zhang et al [33] describe an octree-based isoconturing
method for automatic multimaterial tetrahedral and hexahedral mesh generation.
Merkley et al [14] present methods and applications of sheet insertion in a hexa-
hedral mesh; their basic idea relies on the dual of quad or hex (2D or
3D, respectively). Boundary layer creation by insertion of layers of sheets of hexes
along the boundary is described. Wang and di Mare [32], in their paper about au-
tomatic hex mesh generation for turbo-machinery applications, describe a tech-
nique to create boundary layer elements by carefully placing, maintaining, and
dicing a buffer layer around a geometry. Their work also preserves material and
boundary conditions after the boundary layer mesh generation process; they make
use of specific templates for boundary layer insertion, and their method is closely
tied to automation and turbomachinery applications. In another recent study, Ma-
réchal [13] presents an improvement on octree-based methods for handling sharp
features and generating boundary layers.

In this paper we address the problem of generating boundary layers elements
for geometry decomposition boundaries that are typically observed during hex

4 Rajeev Jain and Timothy J. Tautges

meshing across the boundary layer region. Boundary layer generation for multi-
material models and wake regions are supported for hex, tet, quad, and tri meshes.
Multiple surfaces can be specified for boundary layer generation. PostBL caters to
the need for generating boundary layer elements for reactor assembly and core
meshes. Given an element budget, mesh generation using paving or other such
techniques for a large number of rods drilled in a reactor model is difficult. With
PostBL layers of elements can be added to an already set-up coarse-meshed reac-
tor core model. Specifying boundary layers as new materials can generate concen-
tric instrumentation pins or narrow gap regions in reactor cores, which are other-
wise hard to generate. PostBL has been implemented by using the MeshKit design
philosophy; interoperability and use of various libraries to implement the algo-
rithm and packages highlighted here will benefit coupling and extending this work
for related tasks.

3 MeshKit and Implementation

PostBL relies on geometry and mesh libraries developed as part of the Interopera-
ble Tools for Advanced Petascale Simulations (ITAPS) project. The common ge-
ometry module (CGM) [27] provides functions for constructing, modifying, and
querying geometric models in solid model-based and other formats. CGM can
evaluate geometry from several underlying geometry engines. ACIS [26] and
Open Cascade [19] based geometries are used in this work. Finite-element mesh
and mesh-related data are stored in the Mesh-Oriented datABase (MOAB) [28],
which provides query, construction, and modification of finite-element meshes,
plus polygons and polyhedra. CGM and MOAB can be accessed through the
ITAPS iGeom and iMesh interfaces [18], respectively.

The iMesh concept of sets and tags is important to the implementation of these
tools. A set is an arbitrary collection of entities and other sets; a tag is data anno-
tating entities, sets, or the interface. The combination of sets and tags is a powerful
mechanism used to describe boundary conditions, material types, and other types
of metadata commonly found with mesh.

MeshKit [15] is an open-source mesh library under development at Argonne
National Laboratory. It is targeted to researchers, tool developers, and users wish-
ing to generate meshes. MeshKit approaches geometry-based meshing and other
mesh operations as a digraph-based process. This graph functionality is imported
from the Lemon graph library [4]. This approach uses a two-phase graph execu-
tion: setup and execution. In the setup phase, algorithms express their require-
ments; automatic sub algorithmic node creation takes place in this phase. In the
execution phase, algorithms actually get executed. Mesh algorithms are represent-
ed as graph nodes, and graph edges are dependencies between algorithms. Exter-
nal packages such as CAMAL [3], NetGen [16], TetGen [24], MESQUITE [10],
and Ipopt [31] are implemented as graph algorithms for various mesh-related
tasks. Meshing algorithms can be applied to a geometric entity or a collection of
entities; operations can also be based on the entities created as a result of the pre-

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 5

vious operation. The graph-based approach allows explicit representation of mesh-
ing dependencies, which may allow parallelization of the meshing process. This
approach also facilitates updating the mesh after small changes. In Fig. 1 a digraph
for meshing a cylinder geometry is shown. First the surface is quad-meshed by us-
ing a quadmesh operation. Then a sweep operation fills the cylinder with hexes.
Both quadmesh and sweep are user-specified mesh operations; MeshKit creates
automatic graph nodes-IntervalMatch, EdgeMesh, and MapMesh-during the setup
phase of the quadmesh and sweep algorithms. In Fig. 1, S1, S2, and S3 are the sur-
faces; C1 and C2 are the curves; and V1 is the volume forming the cylinder. The
type of geometric entity that each mesh operation works on is highlighted inside
its respective parallelogram.

Fig. 1. Digraph-based mesh generation example: sweep-meshing a cylinder.

The PostBL mesh operation adheres to this digraph-based approach. PostBL
can directly read a mesh file, acting as a stand-alone operation, or get a mesh from
the previous graph node. A python interface to MeshKit algorithms helps in script-
ing meshing problems. All meshing algorithms including PostBL can be accessed
through MeshKit’s python interface based on PyTAPS [21]. Figure 2 shows a us-
ers-specified digraph that generates a reactor assembly with a boundary layer
mesh from scratch. The AssyGen [29] operation generates geometry from the text-
based input file describing a reactor assembly. This geometry is input to the Jaal
[30] mesh operation, which feeds into the Extrude mesh operation to generate a
3D mesh. Then PostBL, based on the user-specified inputs, generates the desired
boundary layer elements in the model.

Fig. 2. User-specified digraph for creating reactor assembly mesh with boundary layers.

6 Rajeev Jain and Timothy J. Tautges

4 Algorithm

PostBL is a simple mesh operation implemented as one of the digraph-based algo-
rithms in MeshKit. PostBL mesh operation can be run as a C++ MeshKit executa-
ble or as a python task using MeshKit’s python interface. All mesh file format
supported by MOAB [28] can be used as an input/output file. The core algorithm
is as follows.

1. Determine the mesh dimension, and collect the boundary elements and
nodes. Establish material definition for new elements. If no specific mate-
rial id is specified, new elements are added to original model elements
from which boundary layer elements are derived.

2. For all material nodes on boundary, tag nodes that are a part of more than
one material. Also, find out the number of material boundaries occurring at
each node.

3. Check for material interface elements that have only an edge or node (2D
or 3D) on the boundary. Nodes of such elements are tagged to indicate
multiple normal vectors during node creation.

4. Set the sizes of adjacency and connectivity arrays based on nodal tags in
steps 2 and 3 and the type of the newly created elements.

5. Loop through all the boundary nodes.
a. Find adjacent entities of the same and higher dimension for nor-

mal computation.
b. For nodes with multiple materials, obtain geometric boundary di-

rection for generating boundary layer nodes. If this node has a
material partially connected, also create an average normal from
adjacent material boundaries.

c. Compute normal direction for node creation.
d. For the specified number of intervals, create boundary layer nodes

based on the specified thickness and bias.
6. Reset the coordinates of the bulk mesh with the coordinates of the inner-

most boundary layer nodes created in 5d.
7. To detect collision, check for the Jacobian of boundary elements of the

bulk mesh. If collision is detected, attempt to locally modify the penulti-
mate elements for creating positive Jacobian.

8. Loop through the specified boundary layers (edges for 2D, surfaces for
3D).

a. Create boundary layer elements from nodes created in 5d.
b. Associate new elements with geometry (if available).
c. Set material and boundary sets for newly created elements.

9. Set a “fixed” tag for an optional mesh smoothing operation after the
PostBL operation.

10. Report clock and CPU time, and save the final mesh.

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 7

4.1 Boundary Layer Specification

Basic specification parameters such as thickness and number of intervals along the
boundary are assumed to remain constant throughout the model. A bias variable
indicating the ratio of subsequent node spacing toward the boundary can be speci-
fied. Bias between 0 and 1 indicates finer elements along the boundary. Bias
greater than 1 indicates finer elements toward the bulk mesh. Negative bias is in-
valid. The boundary layer can be specified as a surface/edge id (3D or 2D) or as a
collection in the form of a NEUMANN set. For wake regions, the side that stays
fixed must be specified. By default newly created elements are added to their cor-
responding parent material sets; alternatively, newly created elements can be add-
ed to a material set defined as input (see Section 5.3). Appendix A shows a sample
keyword-based input file to the program. All these keywords can also be specified
as a variable in python script.

4.2 Collision Detection

Postmesh boundary layer generation algorithms do not usually encounter the prob-
lem of collision with bulk mesh. This situation is true for most hex-meshed CFD
models, since only a fraction of edge length is typically used for boundary layer
generation. In PostBL, after pushing the bulk mesh for boundary layer creation,
the deformed elements are checked for positive Jacobian. If negative Jacobian is
detected, local modifications are made to coordinates of the element and its neigh-
boring elements to generate positive Jacobian. The algorithm stops after a prede-
fined number of attempts for local modification of elements.

4.3 Normal Computation and Handling of Multiple Materials

Several special cases are encountered during normal computation, which generally
is the average normal of all the adjacent boundary layer entities. When handling
multiple materials along the boundary, material/volume modification during the
boundary layer generation process must be avoided to prevent any change in mate-
rial volume during the process. Special tags are created on boundary layer nodes
to indicate material boundaries. When a node that is a part of multiple materials is
encountered; a normal is created along each material boundary to maintain con-
stant material volume. Also, for material interface elements that have only an
edge or node (2D or 3D) on the boundary, an additional normal is created to pro-
duce valid and better quality elements. Figure 3(a) and Fig. 3(c) show two initial
mesh models with multiple materials on the boundary. Boundary layers are de-
sired on the bottom edge of this 2D quad mesh. At the node where materials meet,
only one normal along material boundaries is required for Fig. 3(a), while for
mesh in Fig. 3(c) three normal directions are required for creating a valid mesh. In
general, models with sharp corners and edges may require multiple normal direc-
tions for node creation, but this is not done in the work here. It is assumed that

8 Rajeev Jain and Timothy J. Tautges

sharp corners and edges are adequately meshed for postmesh operation to generate
good quality elements.

	
 	

(a) (b)

	
 	

(c) (d)

Fig. 3. Handling multiple materials along boundary layers: (a) Original quad mesh with 2
materials. (b) Final mesh after generating boundary layers. (c) Original quad mesh with 3

materials. (d) Final mesh after generating boundary layers.

4.4 Smoothing

After the PostBL mesh generation is completed, smoothing can optionally be ap-
plied to improve mesh quality. Smoothing can be local or global based on which
entities get specified for smoothing. With local smoothing a fixed tag is applied on
all nodes except nodes near the boundary layer region. Local refining may help
improving mesh quality and/or obtain a gradual change in mesh size from bounda-
ry layers to bulk mesh. Fixed nodes must be carefully chosen to preserve the
boundary layer region. Smoothing the boundary layer nodes may result in loss of
bias in the boundary elements created by PostBL. With global smoothing nodes in
material boundaries are fixed, and the smoothing algorithm can change all interior
nodes. An example of local smoothing is given in Section 5.1.

5 Results

We present simple and complex examples both carefully chosen to demonstrate
the features and limitation of the PostBL tool.

5.1 Simple Tri Mesh

Figure 4(a) shows a simple tri mesh. The orientation of the tri elements on the
boundary layer elements can be slanting upwards or downwards based on the sim-
ulation requirements. Figures 4(b) and 4(d) show the output from PostBL.
TriScheme variable (see Appendix A) of 0 or 1 can be specified for generating

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 9

these results. These meshes contain large-aspect-ratio/low-shape-quality triangles
in the penultimate layer of the boundary layer triangles. Figure 4(e) and 4 (f)
shows the improvement in the shape quality metric of the resulting mesh before
and after using Mesquite. Only the bulk mesh is smoothened in this case, although
based on the requirements either/both bulk and boundary layer mesh could be
smoothened. When boundary layers collide with bulk mesh, new elements are still
created and could be restored during the smoothing phase.

	
 	
 	

(a) (b) (c)

(d) (e) (f)
Fig. 4. Tri mesh example: (a) Original mesh. (b) Three boundary layers on right (slanting

downwards). (c) Bulk mesh smoothened using Mesquite. (d) Three boundary layers (slant-
ing upwards). (e) Shape quality metric of mesh shown in Fig. 4(d) and 4(f). (f) Shape quali-

ty metric after smoothing bulk mesh.

5.2 Exterior Boundary Layers on a Quad Mesh

Figure 5 shows a simple plate with an elliptical cavity and its corresponding
boundary layer elements. At the two corners of the cavity the quality of the ele-
ments is poor. Several boundary layer algorithms create a multiple normal at
points where the normal from neighboring elements differs by a certain percent-
age. Since this is a postmesh operation, the original mesh is responsible for captur-
ing the boundary features of the model. In this algorithm the average normal of all
the boundary layer elements is chosen for creation of new boundary layer ele-
ments. The choice of creating only one normal from each boundary layer node is
reasonable for meshes that have the boundary layer surfaces sufficiently resolved.
We note that the use of tuck or wedge-type node placement would better account
for the local curvature observed here.

10 Rajeev Jain and Timothy J. Tautges

!	
 !	

(a) (b)

Fig. 5. Quad mesh example: (a) Original mesh. (b) Mesh with 4 boundary layers.

5.3 Hex-Meshed Reactor Assembly

The next example demonstrates internal boundary layers on a hex mesh, since el-
ements are present on both sides of the boundary. Figure 6(a) shows a hex-meshed
nuclear reactor assembly containing six fuel rods and one control rod at the center.
The solid line on the control rod indicates the original geometric body. Layers of
boundary elements can be generated and optionally set-up as a new material type.
Setting boundary layers as new material can be useful for creating instrumentation
pins and fluid gaps concentric to the original rods. Several types of reactor assem-
blies have a lot of fuel rods drilled on them, and it is hard to pave the surface of
the geometry; complexity increases as the number of concentric rods to the fuel
rods increases. Also, because of the high temperature of the fuel rod, heat flux
near the fuel rods is high, thereby requiring a finer mesh in this region. In Fig. 6,
side surfaces of all cylindrical rods are set-up as input boundary layers. Three
types of boundary layer meshes can be generated as shown in Fig. 6(b), 6(c) and
6(d). Based on the requirements of fluid dynamics, neutronics, or structural me-
chanics varying combinations on interior or exterior boundary layers can be gen-
erated. In Fig. 6(b), the boundary layer elements are generated toward the cylin-
drical region, whereas in Fig. 6(c) the boundary layer elements are generated away
from the cylindrical region. Using the FIXMAT keyword can specify bulk mesh
that does not change during the boundary layer creation. When creating elements
on both sides of the boundary, different thickness and bias can be specified for
each side of the boundary. A bias of 0.7 is used for this example. Fig. 6(d) shows
boundary layer elements generated on both sides of the cylindrical region. This
feature is useful for creating boundary layer meshes in wake regions where the
boundary layer is surrounded on both sides by materials.

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 11

	
 	

(a) (b)

	
 	

(c) (d)

Fig. 6. Quad mesh example with elements on both sides: (a) Original mesh. (b) Mesh with
4 boundary layers toward the cylinders (c) Mesh with 4 boundary layers away from the cyl-

inders. (d) Boundary layers on both sides of the cylinders.

5.4 Simple Tetrahedral Mesh

Figures 7(a) and 7(b) show 12 tetrahedral elements on a cube geometry; Figures
7(c) and 7(d) highlight the hybrid mesh (tetrahedral and prism elements) with 4
prism elements added to the existing mesh. Gmsh [5] is used to display the
shrunken elements in this model.

12 Rajeev Jain and Timothy J. Tautges

	
 	

(a) (b)

	

	

(c) (d)

Fig. 7. Tet mesh example: (a) Original mesh. (b) Original mesh with elements shrunk by a
factor of 80%. (c) Mesh with two boundary layer prisms. (d) Final mesh shrunk by 80%

showing tetrahedral and prism elements.

5.5 19 Assembly Hex-Meshed Reactor Core

Figure 8(a) shows a reactor core created by using MeshKit/RGG tools: AssyGen
and CoreGen [29]. Based on the user-specified description, AssyGen first creates
the two types of reactor geometries involved in the model. The outer covering and
the two assemblies are meshed separately by using MeshKit algorithm(s). Core-
Gen then is used to copy/move/merge the three mesh files and form the core mesh.
Four layers of boundary layer elements are then added to the fluid region and gap
region between the assemblies. Actual reactor core models have hundreds of as-
semblies forming the reactor; adding boundary layers during the generation of
core mesh is difficult because of the complexity and the number of parts involved
in the model. PostBL preserves the initial material and boundary conditions pre-
scribed by RGG and allows for creation of varying boundary layers for different
meshes used in a multiphysics simulation. Figure 8(b) shows a close-up view of
the region highlighted in Fig. 8(a). Note that only the gap and fluid region are
shown in Fig. 8(b). Figure 8(c) shows a close-up view of the mesh after the
PostBL operation. In addition to the fuel and gap regions, fuel pins are shown in-
order to clearly identify the change from the initial mesh.

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 13

	
 	

(a) (b)

	

(c)	

Fig. 8. 19 assembly reactor core mesh: (a) Original mesh. (b) Close-up of original mesh
showing fluid and gap regions. (c) Close-up of original mesh showing boundary layers on

fluid and gap regions.

5.6 Hex-Meshed T-Junction Benchmark Problem

Figure 9(a) shows the OECD Vattenfall T-Junction benchmark mesh that was
used in a blind benchmark of various CFD codes. The Argonne code Nek5000
participated in this benchmark using this mesh [17]. The mesh was generated with
CUBIT 10.2, then modified to extend the (top) inflow and (side) outflow pipes.
Non circular surfaces are Neumann boundary layers for PostBL operation; six lay-
ers of boundary elements are added. Figure 9(b) shows a zoomed-in view of the T-
junction in the original mesh. PostBL uses only one normal direction on this T-
intersection point to create new boundary layer elements; this allows for creation
of a smooth mesh with similar-sized elements. Creating multiple normal at sharp

14 Rajeev Jain and Timothy J. Tautges

features such as this T-junction may result in better-quality elements, but this
would be also cause the creation of very small elements that may not be desired by
the simulations. The aspect ratio of hex elements of this mesh is shown in Fig.
9(c); elements with lower aspect ratio are on the boundary and acceptable. A
close-up in Fig. 9(d) shows a zoomed view of the T-junction with six new layers
as a separate material. Mesquite is used for improving the quality of hex elements
in the bulk region that are close to the boundary layer elements. Figure 9(e) shows
the zoomed view of the T-junction with improved shape of the hex near the
boundary layers.

	
 	

(a) (b)

	
 	

(c) (d)

(e)

Fig. 9. Hex meshed T-junction example: (a) Sectional view of the original mesh. (b) Close-
up sectional view highlighting the T-junction. (c) Mesh with 6 boundary layers showing as-
pect ratio of the final mesh. (d) Close-up along T-junction with 6 boundary layers generated

by PostBL. (e) Close-up along T-junction after smoothing using Mesquite.

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 15

6 Discussion and Future Work

PostBL is useful for CFD analysts studying solution parameters by varying the
number of boundary layers. Remeshing of the entire model is required if pre-
boundary layer methods are utilized, a time consuming and unstable strategy for
complicate problems. It is desired that the mesh input to PostBL resolve the ge-
ometry around the boundary. When there is no collision with other boundaries,
high-quality boundary layers can be generated by using PostBL. The final mesh
produced by PostBL can be smoothened to improve the mesh quality at the inter-
face between the bulk and new boundary layer mesh. Generic templates for re-
finement of hex, tri, and quad meshes during the post mesh boundary layer opera-
tion can be added to provide more element choices for the users. In its current
implementation PostBL is serial; more work is needed for distributed paralleliza-
tion of the tool. Further research also can be done on utilizing the quality metrics
of the modified bulk mesh for point insertion and normal calculation. MeshKit’s
graph-based meshing process is explained in this work, since PostBL can be used
for boundary layer generation after meshing using MeshKit algorithms.

7 Conclusion

PostBL is well suited for complicated geometries that are difficult to mesh by us-
ing automatic mesh generation techniques. It can be applied to hex, tet, tri, and
quad meshes. It presents an attractive alternative to conventional pre-boundary
layer tools. PostBL can generate boundary layers on interior (shared by two mate-
rials) or exterior surfaces of an already existing mesh model. Material and bounda-
ry information about the initial model is preserved and extended to include bound-
ary layer elements in the final model. PostBL is ideally suited for hexahedral
meshes where decomposition boundaries intersect boundary layer regions. Several
refinement tools such as CUBIT solely rely on the volume or surface of the model
for boundary layer mesh generation, an approach that does not work with decom-
posed geometry. PostBL has been applied to reactor assembly and core meshes,
and it can help increase the mesh resolution in coolant flow and wake regions.

16 Rajeev Jain and Timothy J. Tautges

APPENDIX

A. Sample .inp file specifying the parameters required by the PostBL tool.

Acknowledgments

We thank the Fathom group at Argonne, who maintain the libraries required by
this tool. This work was supported in part by the U.S. Department of Energy Of-
fice of Nuclear Energy Nuclear Energy Advanced Modeling and Simulation
(NEAMS) Program; by the U.S. Department of Energy Scientific Computing Re-
search, Office of Science; and by the U.S. Department of Energy’s Scientific Dis-
covery through Advanced Computing program, under Contract DE-AC02-
06CH11357.

References

1. Bahrainian, S. S., and Mehrdoost, Z. (2012). An automatic unstructured grid genera-
tion method for viscous flow simulations. Mathematics and Computers in Simulation.

2. Bottasso, C. L., and Detomi, D. (2002). A procedure for tetrahedral boundary layer
mesh generation. Engineering with Computers, 18(1), 66-79.

! Name of the input mesh file
MeshFile 5b.cub

! Slant direction of tri-meshes 0 or 1
!TriScheme 0

! id of the neumann set on which boundary layer needs to be created.
NeumannSet 55
!Exlclaimation mark indicates comment line:
!To specify surface use either Surfaces or NeumannSet keyword.
! Id of the surface on which boundary layer needs to be created (commented).
!Surfaces 11

! Material id that will be assigned to newly created hexes.
Material 55

! Boundary layer thickness.
Thickness 0.3

! Number of layers.
Intervals 2

! Bias is the ratio of interval size of two consecutive boundary layers. >0.
Bias 1.0

! Name of output mesh file, can be any format that is supported by MOAB.
Outfile 5b_postbl.h5m

Debug 1
! This marks the end of input file for boundary layer generation.
END

PostBL: Post-Mesh Boundary Layer Mesh Generation Tool 17

3. CAMAL - The CUBIT Adaptive Meshing Algorithm Library, Sandia National La-
boratories, Albuquerque.

4. Dezs, B., Jüttner, A., & Kovács, P. (2011). LEMON - An open source C++ graph tem-
plate library. Electron. Notes Theor. Comput. Sci., 264(5), 23–45.

5. Garimella, R. V., and Shephard, M. S. (2000). Boundary layer mesh generation for
viscous flow simulations. International Journal for Numerical Methods in Engineer-
ing, 49(1), 193-218.

6. Geuzaine, C., and Remacle, J. F. Gmsh: A three-dimensional finite element mesh gen-
erator with built-in pre-and post-processing facilities, Version 2.2. 4, 2008.

7. Guillaume, V., Fornier, Y., and Boubekeur, T. (2012). Hybrid Viscous Layer Insertion
in a Tetrahedral Mesh, In IMR (Research Note).

8. Ito, Y., and Nakahashi, K. (2002, September). Unstructured Mesh Generation for Vis-
cous Flow Computations. In IMR (pp. 367-377).

9. Karman, S. L. (2007). Unstructured viscous layer insertion using linear-elastic
smoothing. AIAA journal, 45(1), 168-180.

10. Knupp, P. (2006, September). Mesh quality improvement for SciDAC applications. In
Journal of Physics: Conference Series, Vol. 46, No. 1.

11. Loseille, A., and Löhner, R. (2009). On 3D anisotropic local remeshing for surface,
volume and boundary layers. In Proceedings of the 18th International Meshing
Roundtable (pp. 611-630). Springer Berlin Heidelberg.

12. Loseille, A., and Löhner, R. (2013). Robust boundary layer mesh generation. In Pro-
ceedings of the 21st International Meshing Roundtable (pp. 493-511). Springer-Berlin.

13. Maréchal, L. (2009). Advances in octree-based all-hexahedral mesh generation: han-
dling sharp features. In Proceedings of the 18th International Meshing Roundtable (pp.
65-84). Springer-Berlin.

14. Merkley, K., Ernst, C., Shepherd, J. F., and Borden, M. J. (2008, January). Methods
and applications of generalized sheet insertion for hexahedral meshing. In Proceedings
of the 16th International Meshing Roundtable (pp. 233-250). Springer-Berlin.

15. MeshKit: http://trac.mcs.anl.gov/projects/fathom/browser/MeshKit
16. NetGen – automatic mesh generator, Johannes Kepler University Linz, 2008.
17. Obabko, A. V., Fischer, P. F., Tautges, T. J., Karabasov, S., Goloviznin, V. M.,

Zaytsev, M. A., and Aksenova, A. E. (2011). CFD validation in OECD/NEA t-junction
benchmark (No. ANL/NE-11/25). Argonne National Laboratory, Argonne, IL.

18. Ollivier-Gooch, C., Diachin, L., Shephard, M. S., Tautges, T., Kraftcheck, J., Leung,
V., and Miller, M. (2010). An interoperable, data-structure-neutral component for
mesh query and manipulation. ACM Transactions on Mathematical Software
(TOMS), 37(3), 29.

19. Open CASCADE technology website (2000–2010) http://www.opencascade.org
20. Pirzadeh, S. Z. (2010). Advanced unstructured grid generation for complex aerody-

namic applications. AIAA Journal, 48(5), 904-915.
21. PyTAPS, website, https://pypi.python.org/pypi/PyTAPS/
22. Quadros, W. R., and Shimada, K. (2002). Hex-layer: layered all-hex mesh generation

on thin section solids via chordal surface transformation. In Proceedings of 11th Inter
National Meshing Roundtable (pp. 169-180)

23. Schlichting, H., and Gersten, K. (2000). Boundary-Layer Theory. Springer-Berlin.
24. Si, H. (2006, January). On refinement of constrained Delaunay tetrahedralizations.

In Proceedings of the 15th International Meshing Roundtable (pp. 509-528). Springer
Berlin Heidelberg.

18 Rajeev Jain and Timothy J. Tautges

25. Sjaardema, G.D, Tautges, T. J, Wilson, T. J, Owen, S. J, Blacker, T. D, Bohnhoff, W.
J, Edwards, T. L, Hipp, J. R, Lober, R. R, and Mitchell, S. A (1994). CUBIT mesh
generation environment, users manual, vol 1. Sandia National Laboratories, Albuquer-
que

26. Spatial website (2010) http://www.spatial.com/
27. Tautges, T. J (2005) CGM: a geometry interface for mesh generation, analysis and

other applications. Eng Comput 17:486–490
28. Tautges, T. J, Meyers, R, Merkley, K, Stimpson, C, Ernst, C (2004). MOAB: A mesh-

oriented database, SAND2004-1592. Sandia National Laboratories, Albuquerque.
29. Tautges, T. J., and Jain, R. (2012). Creating geometry and mesh models for nuclear re-

actor core geometries using a lattice hierarchy-based approach. Engineering with
Computers, 28(4), 319-329.

30. Verma, C. S., and Tautges, T. (2012). Jaal: Engineering a high quality all-quadrilateral
mesh generator. In Proceedings of the 20th International Meshing Roundtable (pp.
511-530). Springer-Berlin.

31. Wächter, A., and Biegler, L. T. (2006). On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1), 25-57.

32. Wang, F., and di Mare, L. (2013). Automated hex meshing for turbomachinery sec-
ondary air system. In Proceedings of the 21st International Meshing Roundtable (pp.
549-566). Springer-Berlin.

33. Zhang, Y., Hughes, T. J., and Bajaj, C. L. (2010). An automatic 3D mesh generation
method for domains with multiple materials. Computer Methods in Applied Mechanics
and Engineering, 199(5), 405-415.

